KmPlot/Using Sliders/de: Difference between revisions

From KDE Wiki Sandbox
(Created page with "KmPlot/Einsatz von Schiebereglern")
 
(Created page with "Ein besonderes Merkmal von '''KmPlot''' ist die Veranschaulichung der Wirkung eines Parameters auf den Kurvernverlauf einer Funktion.")
Line 1: Line 1:
<languages />
<languages />
A main feature fo '''KmPlot''' is to visualize the influence of parameters to the curve of a function.  
Ein besonderes Merkmal von '''KmPlot''' ist die Veranschaulichung der Wirkung eines Parameters auf den Kurvernverlauf einer Funktion.  


==Moving a Sinus Curve==
==Moving a Sinus Curve==

Revision as of 17:52, 11 October 2010

Ein besonderes Merkmal von KmPlot ist die Veranschaulichung der Wirkung eines Parameters auf den Kurvernverlauf einer Funktion.

Moving a Sinus Curve

Let's see, how to move a sinus curve left and right:

  • Create a new cartesian plot.
  • Enter the equation
    f(x,a) = sin(x-a)
  • Check the Slider option and choose Slider No. 1 from the drop down list.
  • To make the available sliders visible, check View -> Show Sliders

Now you can move the slider and see how the parameter value modifies the position of the curve.

Trajectory of a Projectile

Now let's have a look at the maximum distance of a projectile thrown with different angles. We use a parametric plot depending on an additional parameter which is the angle.

  • Define a contant v_0 for the starting velocity.
  • Create a new parametric plot
  • Enter the equations
    f_x(t,α) = v_0∙cos(α)∙t
    f_y(t,α) = 2+v_0∙sin(α)∙t−5∙t^2
  • Check the Slider option and choose Slider No. 1 from the drop down list.
  • To make the available sliders visible, check View -> Show Sliders

Now you can move the slider and see how the distance depends on the parameter value.