Digikam/Reconeixement facial

From KDE Wiki Sandbox
Revision as of 15:04, 24 March 2012 by Abella (talk | contribs) (Created page with "Com el nom suggereix, la funcionalitat de reconeixement facial es pot utilitzar per trobar les fotos que contenen cares i adjuntar etiquetes a la cara de les persones a les fotos...")

Reconeixement facial al digiKam 2.0

Transcrit des de l'article d'en Dmitri Popov, l'11 d'abril de 2011

El reconeixement facial ha estat una de les característiques més requerides al digiKam i la darrera versió de l'aplicació de gestió fotogràfica la proveeix.

Com el nom suggereix, la funcionalitat de reconeixement facial es pot utilitzar per trobar les fotos que contenen cares i adjuntar etiquetes a la cara de les persones a les fotos. Això us permetrà localitzar ràpidament totes les fotos d'una persona específica utilitzant les capacitats de filtrat del digiKam.

Tagging faces in digiKam is a rather straightforward procedure. Open the photo you want in the preview pane, press the Add a Face Tag button, draw a rectangle around a face on the photo, enter the face tag (e.g., the person’s name), and press Confirm.



Tagging faces manually can be a daunting proposition, especially if you have a considerable number of photos of people. Fortunately, digiKam can do the donkey job of automatically identifying faces for you. Expand the People sidebar, and press the Scan collections for faces button. In the Scanning Faces window tick the Detect and recognize faces check box. By default, digiKam scans all collections and tags, but you can limit the scan operation to certain albums and tags. To do this, press the Options button and select the albums and tags you want from the Search in drop-down list in the Albums section. While at it, you can tweak the face detection parameters in the Parameters section. Press then the Scan button and let digiKam do its job. Once the scan is completed, you should see all photos containing faces. You can then go through the scanned photos to fix face tags and remove incorrectly identified images.